# Symbolic definitions part3

### Symbolic representations of Itobodies

Itoidentireplica, Ito $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; \sum_{ori}^{simi} (O,U,E,D,T,S,F,N) \; where\; X_{ori} = X_{ito}$

Original, Ori $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U,E,D,T,S,F,N)$

Idoriginal, Ido $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S,F,N^{q}) \; where\; C_{ori} = C_{ido} \; and\; X_{ori} = X_{ido}$

Coriginal, Cori $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Pi,F^\pi,N^{q}) \; where\; X_{ori} = X_{cori}$

Cidentireplica, Cito $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S,F,N^{q}) \; where\; C_{ori} = C_{cito} \; and\; X_{ori} = X_{cito}$

Videntireplica, Vito $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Delta,F^\delta,N^{q}) \; where\; X_{ori} = X_{vito}$

Fidentireplica, Fito $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Upsilon,F^\upsilon,N^{q}) \; where\; X_{ori} = X_{fito}$

Isoidentireplica, Iso $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Psi,F^\psi,N^{q})\; where\; X_{ori} = X_{iso}$

Enhaidentireplica, Enha $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Lambda,F^\lambda,N^{q})\; where\; X_{ori} = X_{enha}$

Musidentireplica, Mus $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Phi,F^\phi,N^{q})\; where\; X_{ori} = X_{mus}$

Insidentireplica, Insi $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Theta,F^\theta,N^{q})\; where \; X_{ori} = X_{insi}$

Tridentireplica, Trito $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Gamma,F^\gamma,N^{q})\; where \; X_{ori} = X_{trito}$

Nrgidentireplica, Nrg $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Omega,F^\omega,N^{q})\; where \; X_{ori} = X_{nrg}$

Comboidentireplica, Combo $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow}\;\prod_{ori}^{simi} (O,U^{h},E^{m},D^{x},T^{i},S^\Sigma,F^\sigma,N^{q}) \; where\; X_{ori} = X_{combo}$

Simidentireplica, Simi $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S^\Xi,F^\xi,N^{q}) \; where\; X_{ori} = X_{simi}$

X is the symbol for ixperiencitness. C is the symbol for consciousness.

O represents the original or point of concern such as you. U is the universe, with what can be different physical laws, that the itobody exists in. E represents the exacting material factors like: chemical composition, same matter over time, placement of matter in the itobody etc. D represent the spacial aspects of the itobody such as where it is at any particular time orientation of the matter and of the itobody. T represents the time that the original exist in it can be both absolute time, or relative time to other event in time. Since time can proceed at different speeds due to acceleration gravity and velocity. this is included as well. S stands for the exact structure over time. F stands for the exact functioning over time. N is the symbol for the exact environmental conditions that influenced the itobody over time.

Itoidentireplica, Ito $\; \sum_{ori}^{simi} (O,U,E,D,T,S,F,N) \;$

Original, Ori $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \;\; (O,U,E,D,T,S,F,N)$

Idoriginal, Ido $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \;\; (O,U^{h},E^{m},D^{x},T^{i},S,F,N^{q}) \;$

Coriginal, Cori $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; \; (O,U^{h},E^{m},D^{x},T^{i},S^\Pi,F^\pi,N^{q}) \;$

Cidentireplica, Cito $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; (O,U^{h},E^{m},D^{x},T^{i},S,F,N^{q}) \;$

Videntireplica, Vito $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; \; (O,U^{h},E^{m},D^{x},T^{i},S^\Delta,F^\delta,N^{q}) \;$

Fidentireplica, Fito $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; \; (O,U^{h},E^{m},D^{x},T^{i},S^\Upsilon,F^\upsilon,N^{q}) \;$

Isoidentireplica, Iso $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; \; (O,U^{h},E^{m},D^{x},T^{i},S^\Psi,F^\psi,N^{q})\;$

Enhaidentireplica, Enha $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; \; (O,U^{h},E^{m},D^{x},T^{i},S^\Lambda,F^\lambda,N^{q})\;$

Musidentireplica, Mus $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; \; (O,U^{h},E^{m},D^{x},T^{i},S^\Phi,F^\phi,N^{q})\;$

Insidentireplica, Insi $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \;\; (O,U^{h},E^{m},D^{x},T^{i},S^\Theta,F^\theta,N^{q})\;$

Tridentireplica, Trito $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \;\; (O,U^{h},E^{m},D^{x},T^{i},S^\Gamma,F^\gamma,N^{q})\;$

Nrgidentireplica, Nrg $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; \; (O,U^{h},E^{m},D^{x},T^{i},S^\Omega,F^\omega,N^{q})\;$

Comboidentireplica, Combo $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \; \; \prod_{ori}^{simi} (O,U^{h},E^{m},D^{x},T^{i},S^\Sigma,F^\sigma,N^{q})\;$

Simidentireplica, Simi $\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longrightarrow} \;\; (O,U^{h},E^{m},D^{x},T^{i},S^\Xi,F^\xi,N^{q}) \;$

### Symbolic representations of Fazconcepts

$S^\Omega,F^\omega\;$ $S^\Gamma,F^\gamma\;$

Tcon is the total consciousness produced by a itobody. It can be more than what the awareconcept represents. Ixpe represents the ixperiencitness concept. Epi represent the knowledge about all the fazconcept including itself. N is the term for enviromental conditions. The term $\And$ means all the other related knowledge like how to produce a certain physapath or ixpepath.

Physiconcept $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; \;\frac{d(O,U,E,D,T,S,F)}{dt}\ \;\Longleftrightarrow$

$\;\frac{d(O)}{dt}\,\uplus\frac{d(U)}{dt}\,\uplus\;\frac{d(E)}{dt}\,\uplus\frac{d(D)}{dt}\,\uplus\frac{d(T)}{dt}\,\uplus\frac{d(S)}{dt}\,\uplus \frac{d(F)}{dt}\,$

Physaconcept $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; \;\frac{d(O,U,S,F)}{dt}\$

Awareconcept $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; \;\frac{d(con)}{dt}\ \; or\;\frac{d(C)}{dt}\$

Mentaconcept $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; \;\frac{d(men)}{dt}\\; or \;\frac{d(TC)}{dt}\ \$

Ixpeconcept $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; \;\frac{d(ixpe)}{dt}\ \; or\;\frac{d(X)}{dt}$

Epiconcept $\;\;\;\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \; \Bbbk\frac{d(O,U,E,D,T,S,F)}{dt}\;\uplus\; \Bbbk\frac{d(O,U,S,F)}{dt}\;\uplus\;\Bbbk \frac{d(C)}{dt}\;\uplus\;\Bbbk \frac{d(TC)}{dt}\;\uplus \;\Bbbk \frac{d(X)}{dt} \;\uplus\;\Bbbk\frac{d(\Bbbk)}{dt}\;{\Longleftrightarrow}$

$\;\frac{d(O)}{dt}\,\;\uplus\;\;\Bbbk\frac{d(U)}{dt}\,\;\uplus\;\;\Bbbk\frac{d(E)}{dt}\,\;\uplus\;\Bbbk \frac{d(D)}{dt}\,\;\uplus\;\Bbbk\;\frac{d(T)}{dt}\;\uplus\;\Bbbk\frac{d(S)}{dt}\;\uplus\;\Bbbk\frac{d(F)}{dt}\;\uplus\;\Bbbk \frac{d(C)}{dt}\;\uplus\;\Bbbk \frac{d(TC)}{dt}\;\uplus \;\Bbbk \frac{d(X)}{dt} \;\uplus\;\Bbbk\frac{d(N)}{dt} \;\uplus\;\Bbbk\frac{d(\Bbbk)}{dt}\;\uplus\;\Bbbk\frac{d(\And )}{dt}\;{\Longleftrightarrow}$

$\; \Bbbk\frac{d(O,U,E,D,T,S,F,C,TC,N,X,\Bbbk,\And )}{dt}\;$

### Symbolic representations of Physiconcepts

Physispace$\;\;$ $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$ $\overbrace{Physi} ^{\circledS}$

Physipoint $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$ $\overbrace{ P(x,y,z,\ldots)} ^{\bullet}$

Physimoment $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$ $\overbrace{Physi} ^{\bullet\bullet}$

Physisection $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$ $\overbrace{Physi} ^-$

Physipath $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$ $\overbrace{Physi} ^{\thicksim}$

Physivenue $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$ $\overbrace{Physi} ^{\thickapprox}$

Physiregion $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$$\overbrace{\; \prod_{n}^{m} \sum_{a}^{b} \frac{d(P)}{dt} \;\;} ^{\boxplus }$

Physicontinuum $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$$\overbrace{Physi} ^{\infty}$

Physimulticontinuum $\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} \;$$\overbrace{Physi} ^{\infty\infty}$

Physispace $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \stackrel{\circledS}{P} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{n = 0}}^{\infty} (\overset{\bullet}{P\!_{n^1}}, \overset{\bullet\bullet}{P_{n^2}}, \overset{-\!-}{P_{n^3}}, \overset{\thicksim}{P_{n^4}}, \overset{\thickapprox}{P_{n^5}},\overset{\boxplus}{P_{n^6}},\overset{\infty}{P_{n^7}},\overset{\overset{\infty}{\infty}}{P}\!_{n^8})$

Physipoint $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \; \overset{\bullet}{P} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \;\; P(x,y,z,\ldots)$

Physimoment $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \; \;\overset{\bullet\bullet}{P} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \sum_{p^a}^{p^b} (P)$

Physisection $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \;\; \overset{-\!-}{P}\;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \;\sum_{c^a}^{c^b} \frac{d(P)}{dt}$

Physipath $\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \;\; \overset{\thicksim}{P} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \sum_{birth}^{death} \frac{d(P)}{dt} \;\; or \;\; \sum_\vdash^\dashv \frac{d(P)}{dt}$

Physivenue $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \; \;\overset{\thickapprox}{P} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \sum_{n}^{m} \sum_{birth}^{death} \frac{d(P)}{dt} \;\; or \;\; \sum_{n}^{m} \sum_\vdash^\dashv \frac{d(P)}{dt}$

Physiregion$\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \; \;\overset{\boxplus}{P} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{n}^{m} \sum_{a}^{b} \frac{d(P)}{dt} \;\;$

Physicontinuum $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \;\;\overset{\infty}{P} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(P)}{dt}$

Physimulticontinuum$\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \;\overset{\infty\infty}{P} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \;\sum_{a}^{b} \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(P)}{dt}$

\prod_{i=1}^N x_i

### Symbolic representations of Physaconcepts

Physaspace $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \stackrel{\circledS}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{n = 0}}^{\infty} (\overset{\bullet}{\mathfrak{P}\!_{n^1}}, \overset{\bullet\bullet}{\mathfrak{P}_{n^2}}, \overset{-\!-}{\mathfrak{P}_{n^3}}, \overset{\thicksim}{\mathfrak{P}_{n^4}}, \overset{\thickapprox}{\mathfrak{P}_{n^5}},\overset{\boxplus}{\mathfrak{P}_{n^6}},\overset{\infty}{\mathfrak{P}_{n^7}},\overset{\overset{\infty}{\infty}}{\mathfrak{P}}\!_{n^8})$

Physapoint $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\bullet}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \stackrel{\centerdot}{\mathfrak{P}} \;\; or \;\; \mathfrak{P}(x,y,z,\ldots)$

Physamoment $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\bullet\bullet}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{p^a}^{p^b} (\mathfrak{P})$

Physasection $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{-\!-}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{c^a}^{c^b} \frac{d(\mathfrak{P})}{dt}$

Physapath $\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \;\overset{\thicksim}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{birth}^{death} \frac{d(\mathfrak{P})}{dt} \;\; or \;\; \sum_\vdash^\dashv \frac{d(\mathfrak{P})}{dt}$

Physavenue $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\thickapprox}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{n}^{m} \sum_{birth}^{death} \frac{d(\mathfrak{P})}{dt} \;\; or \;\; \sum_{n}^{m} \sum_\vdash^\dashv \frac{d(\mathfrak{P})}{dt}$

Physaregion$\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\boxplus}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \prod_{n}^{m} \sum_{a}^{b} \frac{d(\mathfrak{P})}{dt} \;\;$

Physacontinuum $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\infty}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(\mathfrak{P})}{dt}$

Physamulticontinuum$\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \;\overset{\overset{\infty}{\infty}}{\mathfrak{P}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \;\sum_{a}^{b} \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(\mathfrak{P})}{dt}$

### Symbolic representations of Awareconcepts

Awarespace $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \stackrel{\circledS}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{n = 0}}^{\infty} (\overset{\bullet}{C\!_{n^1}}, \overset{\bullet\bullet}{C_{n^2}}, \overset{-\!-}{C_{n^3}}, \overset{\thicksim}{C_{n^4}}, \overset{\thickapprox}{C_{n^5}},\overset{\boxplus}{C_{n^6}},\overset{\infty}{C_{n^7}},\overset{\overset{\infty}{\infty}}{C}\!_{n^8})$

Awarepoint $\;\; \overset{\underset{\mathrm{Symbolic\; representation}}{}}{\Longrightarrow} \; \overset{\bullet}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \;\; C(x,y,z,\ldots)$

Awaremoment $\;\;\overset{\underset{\mathrm{Symbolic\; representation}}{}}{\Longrightarrow} \; \overset{\bullet\bullet}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \sum_{p^a}^{p^b} (C)$

Awaresection $\;\;\overset{\underset{\mathrm{Symbolic\; representation}}{}}{\Longrightarrow} \; \overset{-\!-}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \sum_{c^a}^{c^b} \frac{d(C)}{dt}$

Awarepath $\overset{\underset{\mathrm{Symbolic\; representation}}{}}{\Longrightarrow} \; \overset{\thicksim}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \sum_{birth}^{death} \frac{d(C)}{dt} \;\; or \;\; \sum_\vdash^\dashv \frac{d(C)}{dt}$

Awarevenue $\;\;\overset{\underset{\mathrm{Symbolic\; representation}}{}}{\Longrightarrow} \; \overset{\thickapprox}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \sum_{n}^{m} \sum_{birth}^{death} \frac{d(C)}{dt} \;\; or \;\; \sum_{n}^{m} \sum_\vdash^\dashv \frac{d(C)}{dt}$

Awareregion$\;\;\overset{\underset{\mathrm{Symbolic\; representation}}{}}{\Longrightarrow} \; \overset{\boxplus}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{n}^{m} \sum_{a}^{b} \frac{d(C)}{dt} \;\;$

Awarecontinuum $\;\; \overset{\underset{\mathrm{Symbolic\; representation}}{}}{\Longrightarrow} \; \overset{\infty}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(C)}{dt}$

Awaremulticontinuum$\;\; \overset{\underset{\mathrm{Symbolic\; representation}}{}}{\Longrightarrow} \; \overset{\overset{\infty}{\infty}}{C} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \;\sum_{a}^{b} \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(C)}{dt}$

### Symbolic representations of Mentaconcepts

Mentaspace $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \stackrel{\circledS}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{n = 0}}^{\infty} (\overset{\bullet}{\mathfrak{C}\!_{n^1}}, \overset{\bullet\bullet}{\mathfrak{C}_{n^2}}, \overset{-\!-}{\mathfrak{C}_{n^3}}, \overset{\thicksim}{\mathfrak{C}_{n^4}}, \overset{\thickapprox}{\mathfrak{C}_{n^5}},\overset{\boxplus}{\mathfrak{C}_{n^6}},\overset{\infty}{\mathfrak{C}_{n^7}},\overset{\overset{\infty}{\infty}}{\mathfrak{C}}\!_{n^8})$

Mentapoint $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \; \overset{\bullet}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \;\; \mathfrak{C}(x,y,z,\ldots)$

Mentamoment $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \; \overset{\bullet\bullet}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \sum_{p^a}^{p^b} (\mathfrak{C})$

Mentasection $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{-\!-}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{c^a}^{c^b} \frac{d(\mathfrak{C})}{dt}$

Mentapath $\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\thicksim}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{birth}^{death} \frac{d(\mathfrak{C})}{dt} \;\; or \;\; \sum_\vdash^\dashv \frac{d(\mathfrak{C})}{dt}$

Mentavenue $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\thickapprox}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{n}^{m} \sum_{birth}^{death} \frac{d(\mathfrak{C})}{dt} \;\; or \;\; \sum_{n}^{m} \sum_\vdash^\dashv \frac{d(\mathfrak{C})}{dt}$

Mentaregion$\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\boxplus}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \prod_{n}^{m} \sum_{a}^{b} \frac{d(\mathfrak{C})}{dt} \;\;$

Mentacontinuum $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\infty}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(\mathfrak{C})}{dt}$

Mentamulticontinuum$\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\overset{\infty}{\infty}}{\mathfrak{C}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \;\sum_{a}^{b} \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(\mathfrak{C})}{dt}$

### Symbolic representations of Ixpeconcepts

Ixpespace $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \stackrel{\circledS}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{n = 0}}^{\infty} (\overset{\bullet}{\mathfrak{X}\!_{n^1}}, \overset{\bullet\bullet}{\mathfrak{X}_{n^2}}, \overset{-\!-}{\mathfrak{X}_{n^3}}, \overset{\thicksim}{\mathfrak{X}_{n^4}}, \overset{\thickapprox}{\mathfrak{X}_{n^5}},\overset{\boxplus}{\mathfrak{X}_{n^6}},\overset{\infty}{\mathfrak{X}_{n^7}},\overset{\overset{\infty}{\infty}}{\mathfrak{X}}\!_{n^8})$

Ixpepoint $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\bullet}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \;\; \mathfrak{X}(x,y,z,\ldots)$

Ixpemoment $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\bullet\bullet}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{p^a}^{p^b} (\mathfrak{X})$

Ixpesection $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{-\!-}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{c^a}^{c^b} \frac{d(\mathfrak{X})}{dt}$

Ixpepath $\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\thicksim}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{birth}^{death} \frac{d(\mathfrak{X})}{dt} \;\; or \;\; \sum_\vdash^\dashv \frac{d(\mathfrak{X})}{dt}$

Ixpevenue $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\thickapprox}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{n}^{m} \sum_{birth}^{death} \frac{d(\mathfrak{X})}{dt} \;\; or \;\; \sum_{n}^{m} \sum_\vdash^\dashv \frac{d(\mathfrak{X})}{dt}$

Ixperegion$\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\boxplus}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \prod_{n}^{m} \sum_{a}^{b} \frac{d(\mathfrak{X})}{dt} \;\;$

Ixpecontinuum $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\infty}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(\mathfrak{X})}{dt}$

Ixpemulticontinuum$\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\overset{\infty}{\infty}}{\mathfrak{X}} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \;\sum_{a}^{b} \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(\mathfrak{X})}{dt}$

### Symbolic representations of Epiconcepts

Epispace $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \stackrel{\circledS}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \prod_{n = 0}}^{\infty} (\overset{\bullet}{\Bbbk\!_{n^1}}, \overset{\bullet\bullet}{\Bbbk_{n^2}}, \overset{-\!-}{\Bbbk_{n^3}}, \overset{\thicksim}{\Bbbk_{n^4}}, \overset{\thickapprox}{\Bbbk_{n^5}},\overset{\boxplus}{\Bbbk_{n^6}},\overset{\infty}{\Bbbk_{n^7}},\overset{\overset{\infty}{\infty}}{\Bbbk}\!_{n^8})$

Epipoint $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\bullet}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \;\; \Bbbk(x,y,z,\ldots)$

Epimoment $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\bullet\bullet}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{p^a}^{p^b} (\Bbbk)$

Episection $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{-\!-}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{c^a}^{c^b} \frac{d(\Bbbk)}{dt}$

Epipath $\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\thicksim}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{birth}^{death} \frac{d(\Bbbk)}{dt} \;\; or \;\; \sum_\vdash^\dashv \frac{d(\Bbbk)}{dt}$

Epivenue $\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\thickapprox}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \sum_{n}^{m} \sum_{birth}^{death} \frac{d(\Bbbk)}{dt} \;\; or \;\; \sum_{n}^{m} \sum_\vdash^\dashv \frac{d(\Bbbk)}{dt}$

Epiregion$\;\;\overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\boxplus}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \prod_{n}^{m} \sum_{a}^{b} \frac{d(\Bbbk)}{dt} \;\;$

Epicontinuum $\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\infty}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \; \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(\Bbbk)}{dt}$

Epimulticontinuum$\;\; \overset{\underset{\mathrm{Symbolic\; Representation}}{}}{\Longrightarrow} \; \; \overset{\overset{\infty}{\infty}}{\Bbbk} \;\;\overset{\underset{\mathrm{mathematical\; definition}}{}}{\Longrightarrow} \; \; \; \;\sum_{a}^{b} \prod_{-\infty }^{\infty } \sum_{-\!\infty }^{\infty } \frac{d(\Bbbk)}{dt}$

Introduction and foundations concepts; (out dated).

Symbolic definitions, Symbolic definitions part2, Symbolic definitions part3, Symbolic definitions part 4,

### tools

$\dashv$ sudden death

Sum \sum_{k=1}^N k^2

\overbrace{ito} ^{\dot}

$\overbrace{ito} ^{\dot}$

$\overbrace{ 1+2+\cdots+100 }^{5050}$

\circledcirc $\overbrace{ito} ^{dot}$

$\overbrace{ito} ^{\bullet}$

$\overbrace{ito} ^{\bullet,\bullet}$

$\dot{ito}$,$\ddot{ito}$, $\hat{ito}$

\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}

$\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}$

\Alpha \Beta \Gamma \Delta \Epsilon \Zeta

$\Alpha$$\Beta$$\Gamma$$\Delta$$\Epsilon$$\Zeta$

\Eta \Theta \Iota \Kappa \Lambda \Mu

$\Eta$$\Theta$$\Iota$$\Kappa$$\Lambda$$\Mu$

\Nu \Xi \Pi \Rho \Sigma \Tau

$\Nu$$\Xi$$\Pi$$\Rho$$\Sigma$$\Tau$

\Upsilon \Phi \Chi \Psi \Omega

$\Upsilon \Phi \Chi \Psi \Omega$

\alpha \beta \gamma \delta \epsilon \zeta

$\alpha \beta \gamma \delta \epsilon \zeta$

\eta \theta \iota \kappa \lambda \mu

$\eta \theta \iota \kappa \lambda \mu$

\nu \xi \pi \rho \sigma \tau

$\nu \xi \pi \rho \sigma \tau$

\upsilon \phi \chi \psi \omega

$\upsilon \phi \chi \psi \omega$

\varepsilon \digamma \vartheta \varkappa

$\varepsilon \digamma \vartheta \varkappa$

\varpi \varrho \varsigma \varphi

$\varpi \varrho \varsigma \varphi$

\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} $\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}$

\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} $\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}$

\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} $\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}$

\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} $\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}$

\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} $\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}$

\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} $\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}$

\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} $\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}$

\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} $\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}$

\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} $\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}$

\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} $\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}$

αβ γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω Γ Δ Θ Λ Ξ Π Σ Φ Ψ Ω

Cyrillic

А а Ә ә Б б В в Г г Ґ ґ Ѓ ѓ Ғ ғ Д д Ђ ђ Е е Є є Ё ё Ж ж З з Ѕ ѕ И и І і Ї ї İ Й й Ӣ ӣ Ј ј К к Ќ ќ Қ қ Лл Љ љ М м Н н Њ њ Ң ң О о Ө ө П п Р р С с Т т Ћ ћ У у Ў ў Ӯ ӯ Ұ ұ Ү ү Ф ф Х х Ҳ ҳ Һ һ Ц ц Ч ч Ҷ ҷ Џ џ Ш ш Щ щ Ъ ъ Ы ы Ь ь Э э Ю ю Я я

Sum \sum_{k=1}^N k^2 $\sum_{k=1}^N k^2$

Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2$\textstyle \sum_{k=1}^N k^2$

Product \prod_{i=1}^N x_i $\prod_{i=1}^N x_i$

Product (force \textstyle) \textstyle \prod_{i=1}^N x_i $\textstyle \prod_{i=1}^N x_i$

Coproduct \coprod_{i=1}^N x_i $\coprod_{i=1}^N x_i$

Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i $\textstyle \coprod_{i=1}^N x_i$

1_w.3_vM(O_{ab},E_{nm},D_{xy})

$Ori_w(O_a,U,E,D,T,S,C)$

$\overset{\underset{\mathrm{def}}{}}{=}$

$\overset{\underset{\mathrm{def}}{}}{\equiv }$

$\overset{\underset{\mathrm{def}}{}}{\Longleftrightarrow (or \iff) }$

$\overset{\underset{\mathrm{def}}{}}{\Longleftrightarrow}$

$\overset{\underset{\mathrm{Symbolic}}{}}{\Longleftrightarrow}$

$\overset{\underset{\mathrm{Symbolic definition}}{}}{\Longleftrightarrow}$

$\overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow}$

$Ori \overset{\underset{\mathrm{Symbolic\; definition}}{}}{\Longleftrightarrow} (O,U,E,D,T,S,C)$

$1_w.1_vB(O_{ab}) \xleftarrow{Compaction} \dot= \xrightarrow{Elaboration} Ori_w(O_a,U,E,D,T,S,C) =B= Ori_v(O_b,U,E,D,T,S,C)$

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto

$\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}$ $\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto$

\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)

$\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)$